Integration of synthetic aperture radar image segmentation method using Markov random field on region adjacency graph
نویسندگان
چکیده
A novel approach to obtain precise segmentation of synthetic aperture radar (SAR) images using Markov random field model on region adjacency graph (MRF-RAG) is presented. First, to form a RAG, the watershed algorithm is employed to obtain an initially over-segmented image. Then, a novel MRF is defined over the RAG instead of pixels so that the erroneous segmentation caused by speckle in SAR images can be avoided and the number of configurations for the combinatorial optimisation can be reduced. Finally, a modification method based on Gibbs sampler is proposed to correct edge errors, brought by the over-segmented algorithm, in the segmentations obtained by MRF-RAG. The experimental results both on simulated and real SAR images show that the proposed method can reduce the computational complexity greatly as well as increase the segmentation precision.
منابع مشابه
Cluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملSegmentation of polarimetric synthetic aperture radar data
A statistical image model is proposed for segmenting polarimetric synthetic aperture radar (SAR) data into regions of homogeneous and similar polarimetric backscatter characteristics. A model for the conditional distribution of the polarimetric complex data is combined with a Markov random field representation for the distribution of the region labels to obtain the posterior distribution. Optim...
متن کاملSpeckle Reduction in Synthetic Aperture Radar Images in Wavelet Domain Exploiting Intra-scale and Inter-scale Dependencies
Synthetic Aperture Radar (SAR) images are inherently affected by a multiplicative noise-like phenomenon called speckle, which is indeed the nature of all coherent systems. Speckle decreases the performance of almost all the information extraction methods such as classification, segmentation, and change detection, therefore speckle must be suppressed. Despeckling can be applied by the multilooki...
متن کاملInteractive Liver Tumor Segmentation Using Graph-cuts and Watershed
We present in this paper an application of minimal surfaces and Markov random fields to the segmentation of liver tumors. The originality of the work consists in applying these models to the region adjacency graph of a watershed transform. We detail the assumptions and the approximations introduced in these models by using a region graph instead of a pixel graph. This strategy leads to an inter...
متن کاملMarkov Random Fields for SAR Remote Sensing Applications
This article aims at illustrating the powerfulness of Bayesian and specially Markovian frameworks for different remote sensing applications and in particular for SAR (Synthetic Aperture Radar) image processing. Indeed, the Markovian model is a very convenient way to introduce prior knowledge on the problem to solve. It will first be evoked with examples on the pixel level like filtering, segmen...
متن کامل